MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9691 COMPUTING

9691/31

Paper 3 (Written Paper), maximum raw mark 90

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9691	31

- 1 (a) (i) The table/each student has a repeated group of attributes // each student has a number of subjects [1]
 - (ii) StudentName, TutorGroup and Tutor would need to be repeated for each record [1]

(b)

Table: Student

Table: StudentSubjectChoices

StudentName	TutorGroup	Tutor
Tom	6	SAN
Joe	7	MEB
Samir	6	SAN

Student Name	Subject	Level	Subject Teacher
Tom	Physics	A	SAN
Tom	Chemistry	А	MEB
Tom	Gen Studies	AS	DIL
Joe	Geography	AS	ROG
Joe	French	AS	HEN
Samir	Computing	А	VAR
Samir	Chemistry	А	MEB
Samir	Maths	А	COR
Samir	Gen. Studies	А	DIL

[2]

[1]

[2]

[1]

	Carrin		<i>/</i> \	
Mark as follows				
Complete Student table				[1]
Repetition of StudentName in StudentSu	bjectchoices	s table		[1]
Complete columns 2, 3, and 4	-			[1]
-				

(c) (i) primary key...

- an attribute/combination of attributes
- chosen to ensure that the records in a table are unique // used to identify a record/tuple
- (ii) StudentName + Subject Correct Answer Only
- (iii) there is a one-to-many relationship // Student is the 'one side' table -StudentSubjectChoices is the 'many side' table.
 - The primary key (attribute StudentName) in Student
 - Links to StudentName in the StudentSubjectChoices table
 - (StudentName in the) StudentSubjectChoices table is the foreign key // StudentName is the foreign key that links the two tables [MAX 2]
- (d) There are non-key attributes ... - SubjectTeacher ... - dependent only on part of the primary key (i.e. Subject) // partial dependency [MAX 2] (e) - There are dependent non-key attributes // there are non-key dependencies - TutorGroup is dependent on Tutor // Tutor is dependent on TutorGroup [Total: 14]
- **(b)** 153 [1]

2

(a) 83

Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012 9691		9691	31
(c) −110	0			[1]
	<i>mark</i> Expo Mant	<i>c as follows:</i> onent: +4 // move the pattern four places tissa: +13/16 // 0.1101 ver: 13/16 × 2 ⁴ // or equivalent		[3]
(ii)	Ther	e will be a unique representation for a number		
	accu	format will ensure the number is represented with racy/precision iplication is performed more accurately/precisely	h the greatest	possible/more [MAX 1]
(iii)	Mant	tissa: 0100 0000		
	Expc Ther	onent: 1000 efore number is ½ * 2 ⁻⁸ // +1/512 // +2 ⁻⁹ // 0.00195		[3]
More	e bits	nade will effect range and accuracy s used for the mantissa will result in better accuracy s use for the exponent will result in larger range of num	ibers	[Max 2] [Total: 12]
				[4]
3 (a) Bool Flag		ether or not the requested customer name is found		[1] [1]
Inde: Inde: Inde:	x + 1 x = 20	me 001 // Index >= 2001 // Index > 2000 FALSE // NOT IsFound // Index = 2001 // Index > 2000		[1] [1] [1] [1] [1]
- wh - Fe are r	ien ai w co need	are considered in <u>sequence</u> n item is not found all items are considered mparisons are needed if the value is near the start o ed/it's time consuming if the value is near the end of th erage number of comparisons needed will be N/2 (or 1	ne list	-
	<u>Calc</u> If Re Repe	values must be in order <u>ulate</u> the middle value and compare with the requested equested value is less/greater discard the top/bottom lise at with a new list // compare with a new middle value tinue until value is found or list is empty		[MAX 4]
	Com Kiwi	pare with		
	Bana Cher			[3]
				[Total: 16]

Pa	ge 4		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A LEVEL – May/June 2012	9691	31
4 (a)	21				[1]
(b)	(i)	a 5 -	- b c + /		[1]
	(ii)	23*	62/+		[2]
(C)			ons can be evaluated without the use of brackets s are in execution order / No need to apply a preceder	nce of operators	[1]
(d)	(i)	Last	item added to the stack will be the first item to leave		[1]
	.,				[]
	(ii)		ic structure size of the array will be fixed / size will be defined befo	ore the array is u	sed [2]
((iii)				
					7

5 (a) LDD 105

Accumulator	
0001 0001	

	Main memory
100	0100 0000
101	0110 1011
102	1111 1110
103	1111 1010
104	0101 1101
105	0001 0001
106	1010 1000
107	1100 0001
) /
200	1001 1111

Mark as follows:

- Sensible annotation which makes clear 105 is the address used

- Final value in Acc

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9691	31

(b)

LDX	101
-----	-----

Accumulator	
0101 1101	

Index Register	
00000011	

Main memory				
100	0100 0000			
101	0110 1011			
102	1111 1110			
103	1111 1010			
104	0101 1101			
105	0001 0001			
106	1010 1000			
107	1100 0001			
	$\left(\right)$			
200	1001 1111			

Mark as follows:

- IR contents converted to 3

- Computed address of 101 + 3 = 104

// explanation: add contents of IR to address part of instruction

- Then, 'direct addressing' to 104

- Final value in Acc

[MAX 4]

				
507	Memory Address 507 508 509 510			
22	170	0	0	
		23		
			(171)	
	507 22	507 508	22 170 0	

Mark as follows ...

- 22 to Accumulator
- Incremented to 23
- 23 copied to address 509
- 170 copied to Accumulator and incremented to 171
- 171 in address 510

[5]

(d) Every assembly language instruction is translated into exactly one machine code instruction / there is a 1-to-1 relationship between them [1]

[Total: 11]

	Page 6		i	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE A LEVEL – May/June 2012	9691	31	
6	(a)	Decide which process Gets next use of the processor (low level scheduler) // is next loaded into memory (high level scheduler) maximise system resources					
	(b)	(i)	Run	process currently has the use of the processor nable/Ready			
				process would like to use the processor but the process	ocessor is curre	ntly in use by	
			The	pended/Blocked process is not capable of using the processor / the g I/O	process is curre	ently occupied [6]	
		(ii)		ntain a separate 'data structure' for the processes in ea field of the Process Control Block will store the current		[1]	
	(c)	(i)	The	cessor bound process does very little I/O // the process requires the graphics calculation // any plausible application	processor most	of the time	
			The	<i>bound</i> process does lots of I/O // the process requires little p ication	processor time //	[/] any plausible [4]	
		(ii)	Othe	rity to <u>I/O bound processes</u> erwise they will not get a look in // processor bound eessor	d jobs would m	nonopolise the [2]	
						[Total: 15]	
7	(a)			program of the <u>real-world</u> system is produced <u>t</u> the likely behaviour of a <u>real-world</u> system		[2]	
	(b)	Computer system suitable as A computer program/system can be written/created which model the problem/application The problem can control the values of all the variables/parameters The computer can produce results very quickly // e.g. models what actually takes several days into 5 minutes processing The simulation removes any element of hazard/danger Some real-world problems are impossible to create					
		lt w	ill be	cost-effective to model the problem first		[MAX 2]	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9691	31
(a) Time t			
`	aken to serve a customer		
	er of items in the customer basket		
Accep	able wait time in the queue		
Numbe	er of checkouts		
Time o	f day/day of the week		
	er of customers arriving		
	of the checkout operators		
	ng plausible		[MAX 3]
Anyun			
(d) - Incre	ase the average time taken to serve a customer		
	Il increase the average queue length		
	thing plausible		[2]
			[4]
			[Total: 9]