MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9691 COMPUTING

9691/31
Paper 3 (Written Paper), maximum raw mark 90

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2012	9691	31

1 (a) (i) The table/each student has a repeated group of attributes // each student has a number of subjects
(ii) StudentName, TutorGroup and Tutor would need to be repeated for each record
(b)

Table: Student
Table: StudentSubjectChoices

StudentName	TutorGroup	Tutor
Tom	6	SAN
Joe	7	MEB
Samir	6	SAN

Student Name	Subject	Level	Subject Teacher
Tom	Physics	A	SAN
Tom	Chemistry	A	MEB
Tom	Gen Studies	AS	DIL
Joe	Geography	AS	ROG
Joe	French	AS	HEN
Samir	Computing	A	VAR
Samir	Chemistry	A	MEB
Samir	Maths	A	COR
Samir	Gen. Studies	A	DIL

Mark as follows
Complete Student table
Repetition of StudentName in StudentSubjectchoices table
Complete columns 2, 3 , and 4
(c) (i) primary key...

- an attribute/combination of attributes
- chosen to ensure that the records in a table are unique // used to identify a record/tuple
(ii) StudentName + Subject Correct Answer Only
(iii) - there is a one-to-many relationship // Student is the 'one side' table StudentSubjectChoices is the 'many side' table.
- The primary key (attribute StudentName) in Student
- Links to StudentName in the StudentSubjectChoices table
- (StudentName in the) StudentSubjectChoices table is the foreign key // StudentName is the foreign key that links the two tables
[MAX 2]
(d) - There are non-key attributes ...
- SubjectTeacher ...
- dependent only on part of the primary key (i.e. Subject) // partial dependency
[MAX 2]
(e) - There are dependent non-key attributes // there are non-key dependencies
- TutorGroup is dependant on Tutor // Tutor is dependent on TutorGroup
[Total: 14]

2 (a) 83
(b) 153

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2012	9691	31

(c) -110
(d) (i) +13
mark as follows:
Exponent: +4 // move the pattern four places
Mantissa: +13/16 // 0.1101
Answer: $13 / 16 \times 2^{4}$ // or equivalent
(ii) There will be a unique representation for a number

The format will ensure the number is represented with the greatest possible/more accuracy/precision
Multiplication is performed more accurately/precisely
[MAX 1]
(iii) Mantissa: 01000000

Exponent: 1000
Therefore number is $1 / 2 * 2^{-8} / /+1 / 512$ // $+2^{-9}$ |/ 0.00195
(e) choices made will effect range and accuracy

More bits used for the mantissa will result in better accuracy
More bits use for the exponent will result in larger range of numbers
[Total: 12]

3 (a) Boolean
Flags whether or not the requested customer name is found

SearchName
Index
Index +1
Index = 2001 // Index >= 2001 // Index > 2000
IsFound = FALSE // NOT IsFound // Index = $2001 / /$ Index > 2000
(b) - values are considered in sequence

- when an item is not found all items are considered
- Few comparisons are needed if the value is near the start of the list // Many comparisons are needed/it's time consuming if the value is near the end of the list
- The average number of comparisons needed will be N/2 (or 1000 for this data set)
(c) (i) The values must be in order

Calculate the middle value and compare with the requested value If Requested value is less/greater discard the top/bottom list Repeat with a new list // compare with a new middle value Continue until value is found or list is empty
(ii) Compare with ...

Kiwi
Banana
Cherry

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2012	9691	31

4 (a) 21
(b) (i) $\mathrm{a} 5-\mathrm{b}$ c +
(ii) $23 * 621+$
[2]
(c) Expressions can be evaluated without the use of brackets

Operators are in execution order / No need to apply a precedence of operators
(d) (i) Last item added to the stack will be the first item to leave
(ii) Static structure

The size of the array will be fixed / size will be defined before the array is used
[2]
(iii)

1

1

1

1
[4]
[Total: 12]

5 (a)
LDD 105

Accumulator
00010001

	Main memory
100	01000000
101	01101011
102	1111110
103	11111010
104	01011101
105	00010001
106	10101000
107	11000001
200	10011111

Mark as follows:

- Sensible annotation which makes clear 105 is the address used
- Final value in Acc

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2012	9691	31

(b)

LDX 101

Accumulator
01011101

Index Register
00000011

Main memory

	Main memory
100	01000000
101	01101011
102	11111110
103	11111010
104	01011101
105	00010001
106	10101000
107	11000001
200	10011111

Mark as follows:

- IR contents converted to 3
- Computed address of $101+3=104$
// explanation: add contents of IR to address part of instruction
- Then, 'direct addressing' to 104
- Final value in Acc
(c)

Memory Address			
507	508	509	510
22	170	0	0
		23	
			171

Mark as follows ...

- 22 to Accumulator
- Incremented to 23
- 23 copied to address 509
- 170 copied to Accumulator and incremented to 171
- 171 in address 510
(d) Every assembly language instruction is translated into exactly one machine code instruction / there is a 1-to-1 relationship between them

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2012	9691	31

6 (a) Decide which process ...
Gets next use of the processor (low level scheduler)
// is next loaded into memory (high level scheduler)
maximise system resources
(b) (i) Running

The process currently has the use of the processor
Runnable/Ready
The process would like to use the processor but the processor is currently in use by another process

Suspended/Blocked
The process is not capable of using the processor / the process is currently occupied doing I/O
(ii) Maintain a separate 'data structure' for the processes in each state one field of the Process Control Block will store the current state
(c) (i) Processor bound ...

The process does very little I/O // the process requires the processor most of the time 3D-graphics calculation // any plausible application

I/O bound ...
The process does lots of I/O // the process requires little processor time // any plausible application
(ii) Priority to I / O bound processes

Otherwise they will not get a look in // processor bound jobs would monopolise the processor
[Total: 15]

7 (a) a model/program of the real-world system is produced to predict the likely behaviour of a real-world system
(b) Computer system suitable as ...

A computer program/system can be written/created which model the problem/application
The problem can control the values of all the variables/parameters
The computer can produce results very quickly // e.g. models what actually takes several days into 5 minutes processing
The simulation removes any element of hazard/danger
Some real-world problems are impossible to create
It will be cost-effective to model the problem first
[MAX 2]
(c) Time taken to serve a customer

Number of items in the customer basket
Acceptable wait time in the queue
Number of checkouts
Time of day/day of the week
Number of customers arriving
Speed of the checkout operators
Anything plausible ...
(d) - Increase the average time taken to serve a customer

- ... will increase the average queue length

Or anything plausible ...

